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Counting polynomials are those polynomials having at exponent the extent of a property partition and coefficients the 
multiplicity/occurrence of the corresponding partition. In this paper, omega and Sadhana polynomials are computed for 
nanotubes. These polynomials were proposed on the ground of quasi-orthogonal cuts edge strips in polycyclic graphs. These 
counting polynomials are useful in the topological description of bipartite structures as well as in counting some single number 
descriptors, i.e. topological indices. These polynomials count equidistant and non-equidistant edges in graphs. In this paper, 

analytical closed formulas of these polynomials for H-Naphtalenic, ],)[(84 nmRCTUC  and ],[4 nmTUC  nanotubes are 

derived. 
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1. Introduction and preliminary results 
 

Mathematical chemistry is a branch of theoretical 

chemistry in which we discuss and predict the chemical 

structure by using mathematical tools and doesn’t 

necessarily refer to the quantum mechanics. Chemical 

graph theory is a branch of mathematical chemistry in 

which we apply tools from graph theory to model the 

chemical phenomenon mathematically. This theory 

contributes a prominent role in the fields of chemical 

sciences. 

Carbon nanotubes (CNTs) are types of nanostructure 

which are allotropes of carbon and having a cylindrical 

shape. Carbon nanotubes, a type of fullerene, have potential 

in fields such as nanotechnology, electronics, optics, 

materials science, and architecture. Carbon nanotubes 

provide a certain potential for metal-free catalysis of 

inorganic and organic reactions. 

Counting polynomials are those polynomials having at 

exponent the extent of a property partition and coefficients 

the multiplicity/occurrence of the corresponding partition. 

A counting polynomial is defined as: 

 
k

k

xkGmxGP ),(=),(               (1) 

Where the coefficient ),( kGm  are calculable by various 

methods, techniques and algorithms. The expression (1)

was found independently by Sachs, Harary, Mili c , 

Spialter, Hosoya, etc [5]. The corresponding topological 

index )(GP  is defined in this way:  

 

kkGmxGPGP
k

x   ),(=|),(=)( 1=
 

 

 A moleculer/chemical graph is a simple finite graph 

in which vertices denote the atoms and edges denote the 

chemical bonds in underlying chemical structure. This is 

more important to say that the hydrogen atoms are often 

omitted in any molecular graph. A graph can be represented 

by a matrix, a sequence, a polynomial and a numeric 

number (often called a topological index) which represents 

the whole graph and these representations are aimed to be 

uniquely defined for that graph. 

Two edges uve =  and xyf =  in )(GE  are said 

to be codistant, usually denoted by e co f , if  

 

),(=),( vyduxd  

and  

1),(=1),(=),(=),(  vyduxduydvxd  

 

The relation “ co " is reflexive as e co e  is true for 

all edges in G , also symmetric as if e co f  then f co

e  for all )(, GEfe   but the relation “ co " is not 

necessarily transitive. Consider  
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}:)({=)( ecofGEfeC   

 
If the relation is transitive on )(eC  also, then )(eC  

is called an orthogonal cut “ co " of the graph G . Let 

uve =  and xyf =  be two edges of a graph G , which 

are opposite or topological parallel, and this relation is 

denoted by fope . A set of opposite edges, within the 

same face or ring, eventually forming a strip of adjacent 

faces/rings, is called an opposite edge strip ops, which is a 

quasi-orthogonal cut qoc (i.e. the transitivity relation is not 

necessarily obeyed). Note that “ co ” relation is defined in 

the whole graph while “ op ” is defined only in a face/ring. 

In this article, G  is considered to be simple 

connected graph with vertex set )(GV  and edge set 

)(GE , while ),( kGm  be the number of ops of length 

k , and |)(=| GEe  is the edge cardinality of G . 

The omega polynomial was introduced by Diudea et al. 

in 2006  on the ground of op strips. The omega 

polynomial is proposed to describe cycle-containing 

molecular structures, particularly those associated with 

nanostructures. 

 

Definition 1.1. [1] Let G  be a graph, then its omega 

polynomial denoted by ),( xG  in x  is defined as  

 
k

k

xkGmxG   ),(=),(  

The Sadhana polynomial is defined based on counting 

opposite edge strips in any graph. This polynomial counts 

equidistant edges in G . 

 

Definition 1.2. [6] Let G  be a graph, then Sadhana 

polynomial denoted by ),( xGSd  is defined as  

 
ke

k

xkGmxGSd  ),(=),(  

Ashrafi et al. computed Sadhana polynomial of 

V-phenylenic nanotube and nanotori. 

Theorem 1.0.1. [2] Let G  be the graph of 

V-phenylenic nanotube, then Sadhana polynomial of G  is  

 

 



},{2)|(|2)|(|
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nGEmGEmGE xnxmnx   )|(|2)|(|2)|(| 1)(1)(  

All nanotubes are allotropes of carbon and are a type of 

fullerene. Ghorbani et al. computed omega and Sadhana 

polynomials of an infinite family of fullerene 
nC10
, 10n

. 

 

Theorem 1.0.2. [8] Consider the fullerene graph 
nC10
, 

10n . Then the omega and Sadhana polynomials of nC10  

are computed as follows:  
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The preceding results are used to compute their 

corresponding topological indices which provides a good 

model correlating the certain physico-chemical properties 

of these carbon allotropes.  

 

 
2. Results and discussion 
 

In this paper, we compute Omega and Sadhana 

polynomials of H-Naphtalenic, ],)[(84 nmRCTUC  and 

],[4 qpTUC  nanotubes. For further study of these 

polynomials, their topological indices and various 

nanotubes, consult [3, 7, 9, 10, 11, 12, 13]. These 

polynomials are used to predict various physico-chemical 

properties of certain chemical compounds.  

 

2.1  Results for H-Naphtalenic nanotubes 

 

In this section, we compute omega and Sadhana 

polynomials forH-Naphtalenic nanotubes. This nanotube is 

a trivalent decoration having plane tiling of 4C , 6C  and 

8C . This type of tiling can either cover a cylinder or a 

torus. This family of nanotubes is usually symbolized as 

],[ nmNPHX , in which m  is the number of pairs of 

hexagons in first row and n  is the number of alternative 

hexagons in a column. We have 

mnnmNPHXV 10|=]),[(|  and 

mmnnmNPHXE 215|=]),[(|  . 

Now we compute omega polynomial of H-Naphtalenic 

nanotube. 

 

Theorem 2.1.1. The Omega polynomial of 

H-Naphtalenic nanotube ],[ nmNPHX ,  Nnm,  is 

equal to:  
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where 
mnm xnmxnx 223 1)(=  .   

 

Proof. Let G  be the graph of H-Naphtalenic 

nanotube ],[ nmNPHX ,  Nnm,  with vertex set 

and edge set cardinalities are mn10  and mmn 215   

respectively. Table 1 shows the number of co-distant edges 

in G  for 
2

n
m , Table 2 shows the number of 

co-distant edges in G  for 
2

>
n

m . The horizontal and 

vertical quasi-orthogonal cuts (qoc) are depicted in Fig. a1 , 

while oblique qoc’s are depicted in Fig b1 . The oblique 

qoc’s for 4e  and 5e  are same. 

By using Table 1 and 2, the proof is straightforward. 

 

Table 1. Number of co-distant edges of H-Naphtalenic nanotube ],[ nmNPHX  when 
2

n
m . 

 

Types of qoc Types of edges  No of co-distant edges  No of qoc 

1C  1e  m3  n  

2C  2e  n2  m  

3C  3e  m2  1n  

kC , where 

1,2=k , ... , j  

ke  where 

4,5=k  

i2 where 

1
2

1,2,...,= 
n

i  

 

2  

m4  12  mn  

 

Table 2. Number of co-distant edges of H-Naphtalenic nanotube ],[ nmNPHX  when 
2

>
n

m . 

 

Types of qoc Types of edges  No of co-distant edges  No of qoc 

1C  1e  m3  n  

2C  2e  n2  m  

3C  3e  m2  1n  

 

kC ,  where 

jk 1,2,...,=  

 

ke where 

4,5=k  

i2 where 

11,2,...,= ni  

2  

n2  12 nm  

 

 
Fig. 1. Fig 1a. The horizontal and vertical qoc’s, where Fig 1b. The oblique qoc’s. 

 

 

Now we apply formula and do some easy calculation to 

get our result.  
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 }1)(22{2 22
1

1=

ni
n

i

xnmx 

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 2242 4...44  nxxx . 

 
In the following theorem, the Sadhana polynomial of 

H-Naphtalenic nanotube ],[ nmNPHX  is computed. 

 

Theorem 2.1.2. The Sadhana polynomial of 

H-Naphtalenic nanotube 

 

],[ nmNPHX ,  Nnm,  is as follows:  
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 where 
mmnnmmnmmn xnmxnx 4152215515 1)(=   .   

 

Proof. Let G  be the graph of H-Naphtalenic 

nanotube ],[ nmNPHX ,  Nnm,  with vertex set 

and edge set cardinalities are mn10  and mmn 215   

respectively. 

By using Table 1 and 2 the proof is easy. Now we apply 

formula and do some computation to get our result.  
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k

xkGmxGSd  ),(=),(  

For 
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n
m  
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2.2  Results for ],)[(84 nmRCTUC ,  Nnm,  

nanotube 

 

In this section, we determine omega and Sadhana 

polynomials for ],)[(84 nmRCTUC ,  Nnm,  

nanotube. This nanotube is a trivalent decoration having 

plane tiling of 4C  and 8C . In other words, the whole 

lattice is a plane tiling of 4C  and 8C  and this type of 

tiling can either cover a cylinder or a torus. In 

],)[(84 nmRCTUC  nanotube, m  is the number of 

octagons in any row and n  is the number of octagons in 
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any column. We have 

1)(4|=]),)[((| 84 nmnmRCTUCV  and 

mmnnmRCTUCE 56|=]),)[((| 84  . 

In the following theorem, the omega polynomial of 

],)[(84 nmRCTUC  nanotube is computed. 

 

Theorem 2.2.1. The omega polynomial of 

],)[(84 nmRCTUC  nanotube  Nnm, , is as 

follows:  

 























nmxmnx

nmxnmx

xnmRCTUC
mi

m

i

ni
n

i

<,1)2(4

,1)2(4

=)],,)[((
222

1=

222

1=
84



  

where 
11=   mn nxmx . 

 

Proof. Let G  be the graph of ],)[(84 nmRCTUC  

nanotube,  Nnm, . Table 3  shows the number of 

co-distant edges in G  for nm   and table 4  shows 

the number of co-distant edges in G  for nm < . The 

quasi-orthogonal cuts are depicted in Fig 2 . The oblique 

qoc’s for 3e  and 4e  are same.  

 

Table 3. Number of co-distant edges of ],)[(84 nmRCTUC  nanotube, when nm  . 

 
Types of qoc’s Types of edges  No of co-distant edges  No of qoc 

1C  1e  1n  m  

2C  2e  1m  n  

kC where 

1,2=k ,..., j  

ke where 

3,4=k  

i2 where ni 1,2,...,=  2  

22 n  1nm  

 

Table 4. Number of co-distant edges of ],)[(84 nmRCTUC  nanotube, when nm < . 

 
Types of qoc’s Types of edges  No of co-distant edges  No of qoc 

1C  1e  1n  m  

2C  2e  1m  n  

kC  where 

1,2=k ,..., j  

ke    where 

3,4=k  

i2  where mi 1,2,...,=  2  

22 m  1mn  

 

 

 
 

Fig. 2. Fig 2a. The horizontal and vertical qoc’s,  

where Fig 2b. The oblique qoc’s. 

 

 
By using Table 3 and 4 the proof is mechanical. Now 

we apply formula and do some calculation to get our result.  
k

k

xkGmxG   ),(=),(  
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Now we compute Sadhana polynomial of 
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],)[(84 nmRCTUC , nanotube  Nnm, . Following 

theorem shows the Sadhana polynomial for this family of 

nanotubes. 

 

Theorem 2.2.2. Consider the graph of 

],)[(84 nmRCTUC , nanotube,  Nnm, . Then its 

Sadhana polynomial is as follows:  

 



































nmxmn

x

nmxnm

x

xnmRCTUCSd

mmn

immn
m

i

nmmn

immn
n

i

<,1)2(

4

,1)2(

4

=)],,)[((

236

256

1=

2256

256

1=

84





 

 where 
146156=   mmnnmmn nxmx .   

 

Proof. Let G  be the graph of ],)[(84 nmRCTUC , 

nanotube  Nnm, . The proof of this result is just 

calculation based. We prove it by using Table 3 and 4. We 

know that  
ke
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2.3  Results for ],[4 nmTUC ,  Nnm,  

nanotube 

 
In this section, we compute omega and Sadhana 

polynomials of nanotube covered only by 4C . The D2

-lattice of this nanotube is a plane tiling of 4C . This 

tessellation of 4C  can either cover a cylinder or a torus. 

This nanotube is denoted by ],[4 nmTUC , in which m  

is the number of squares in any row and n  is the number 

of squares in any column as shown in Fig. 4. A D3  

representation of ][6,4 nTUC  nanotube is depicted in 

Fig. 3. 

 
Fig. 3. A ][6,4 nTUC  nanotube covered by 4C . 

 

Lemma 2.3.1. Let ],[4 nmTUC  be the graph of 

nanotube covered by 4C , then its number of vertices are 

 

1)1)((|=]),[(| 4  mnnmTUCV  

Lemma 2.3.2. Consider the graph of ],[4 nmTUC  

nanotube with, then its edge set cardinality is 

 

1)1)((2|=]),[(|  mnnmNPHXE  

Now we compute omega polynomial of ],[4 nmTUC  

nanotube. 

Theorem 2.3.1. The omega polynomial of 

],[4 nmTUC ,  Nnm,  is equal to  
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Proof. Let G  be the graph of ],[4 nmTUC , 

Nnm,  nanotube with vertex and edge cardinalities are 

1)1)((  mn  and 1)1)((2  mn  respectively. 

Table 5 shows the number of co-distant edges of G  with 

nm   and Fig. 4 shows the quasi-orthogonal cuts of G  

with nm  .   
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Table 5. Quasi-orthogonal cuts of ],[4 nmTUC ,  Nnm,  nanotube with nm  . 

 
Types of qoc’s Types of edges  Number of co-distant edges  No of qoc 

1C  1e  1m  n  

2C  2e  1n  1m  

 

 

Fig. 4. Quasi-orthogonal cuts of ],[4 nmTUC ,  

 Nnm,  nanotubes with nm  . 

 
By using Table 5, the proof is just calculation based. 

Now we apply formula to get our required result. 
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By just putting nm =  in preceding equation, we get our 

second part of result.  

Now we compute Sadhana polynomial of 

],[4 nmTUC ,  Nnm, . 

 

Theorem 2.3.2.The Sadhana polynomial of 

],[4 nmTUC ,  Nnm,  is equal to  
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Proof. Let G  be the graph of ],[4 nmTUC , 

Nnm,  nanotube with vertex and edge cardinalities are 

1)1)((  mn  and 1)1)((2  mn  respectively. 

By using Table 5 , the proof is quite easy. We know 

that  
ke

k

xkGmxGSd  ),(=),(  

For nm  ,  
nmmnnmn xmnxxGSd   222 1)(=),(  

 

By just putting nm =  in preceding equation, we get our 

second part of result.  

 

 
3. Conclusion and general remarks 
 

In this paper, two important counting polynomials 

called omega  and Sadhana  are studied. These 

polynomials are useful in determining Omega and Sadhana 

topological indices which play an important role in 

QSAR/QSPR study. We computed these polynomials for 

H-Naphtalenicnanotube ],[ nmNPHX , 

],)[(84 nmRCTUC  nanotube and ],[4 nmTUC  

nanotube ,  Nnm,  for the first time.  
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